MAT: A Multimodal Attentive Translator for Image Captioning
نویسندگان
چکیده
In this work we formulate the problem of image captioning as a multimodal translation task. Analogous to machine translation, we present a sequence-to-sequence recurrent neural networks (RNN) model for image caption generation. Different from most existing work where the whole image is represented by convolutional neural network (CNN) feature, we propose to represent the input image as a sequence of detected objects which feeds as the source sequence of the RNN model. In this way, the sequential representation of an image can be naturally translated to a sequence of words, as the target sequence of the RNN model. To represent the image in a sequential way, we extract the objects features in the image and arrange them in a order using convolutional neural networks. To further leverage the visual information from the encoded objects, a sequential attention layer is introduced to selectively attend to the objects that are related to generate corresponding words in the sentences. Extensive experiments are conducted to validate the proposed approach on popular benchmark dataset, i.e., MS COCO, and the proposed model surpasses the state-of-the-art methods in all metrics following the dataset splits of previous work. The proposed approach is also evaluated by the evaluation server of MS COCO captioning challenge, and achieves very competitive results, e.g., a CIDEr of 1.029 (c5) and 1.064 (c40).
منابع مشابه
Unraveling the Contribution of Image Captioning and Neural Machine Translation for Multimodal Machine Translation
Recent work on multimodal machine translation has attempted to address the problem of producing target language image descriptions based on both the source language description and the corresponding image. However, existingwork has not been conclusive on the contribution of visual information. This paper presents an in-depth study of the problem by examining the differences and complementaritie...
متن کاملImage2Text: A Multimodal Caption Generator
In this work, we showcase the Image2Text system, which is a real-time captioning system that can generate human-level natural language description for any input image. We formulate the problem of image captioning as a multimodal translation task. Analogous to machine translation, we present a sequence-to-sequence recurrent neural networks (RNN) model for image caption generation. Different from...
متن کاملMultimodal Attention for Neural Machine Translation
The attention mechanism is an important part of the neural machine translation (NMT) where it was reported to produce richer source representation compared to fixed-length encoding sequence-to-sequence models. Recently, the effectiveness of attention has also been explored in the context of image captioning. In this work, we assess the feasibility of a multimodal attention mechanism that simult...
متن کاملSelf-Guiding Multimodal LSTM - when we do not have a perfect training dataset for image captioning
In this paper, a self-guiding multimodal LSTM (sg-LSTM) image captioning model is proposed to handle uncontrolled imbalanced real-world image-sentence dataset. We collect FlickrNYC dataset from Flickr as our testbed with 306, 165 images and the original text descriptions uploaded by the users are utilized as the ground truth for training. Descriptions in FlickrNYC dataset vary dramatically rang...
متن کاملBidirectional Attentive Fusion with Context Gating for Dense Video Captioning
Dense video captioning is a newly emerging task that aims at both localizing and describing all events in a video. We identify and tackle two challenges on this task, namely, (1) how to utilize both past and future contexts for accurate event proposal predictions, and (2) how to construct informative input to the decoder for generating natural event descriptions. First, previous works predomina...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017